162,228 research outputs found

    Two-component theory of a droplet of electrons in half-filled Landau level

    Full text link
    We have investigated low energy excitations of a disk of electrons in half-filled Landau level using trail wave function and small-size exact diagonalization approaches. We have constructed a set of many-body basis states that describe correctly the low energy excitations. In this theory a droplet consists of two types of composite fermion liquids, and suggests that a droplet can support an edge magnetoplasmon and low energy droplet excitations. A possibility of measuring these excitations in a quantum dot is discussed.Comment: Figure1 is available from the authors upon request. Three eps files are attached to the tex fil

    Government spending shocks and the multiplier: New evidence from the U.S. based on natural disasters

    Get PDF
    The literature on estimating macroeconomic effects of fiscal policy requires suitable instruments to identify exogenous and unanticipated spending shocks. So far, the instrument of choice has been military build-ups. This instrument, however, largely limits the analysis to the US as few other countries have been involved in mainly extraterritorial conflicts. Moreover, the expenditure associated with military build-ups affects primarily the defense sector so that the resulting multiplier does not necessarily approximate the effects of changes to general government spending. We propose an alternative instrument: government relief expenditure in the wake of natural disasters which is more similar in its scope to general government spending. We construct a rich data set of natural disasters and the corresponding government responses at the US state level. We apply this methodology both at the state as well as national levels and show that natural disasters serve as a powerful instrument for identifying government spending shocks. Furthermore, we show that the multiplier pertaining to non-defense government spending is higher than the defense-spending multiplier estimated in the literature using military build-ups

    Angular momentum transport and element mixing in the stellar interior I. Application to the rotating Sun

    Full text link
    The purpose of this work was to obtain diffusion coefficient for the magnetic angular momentum transport and material transport in a rotating solar model. We assumed that the transport of both angular momentum and chemical elements caused by magnetic fields could be treated as a diffusion process. The diffusion coefficient depends on the stellar radius, angular velocity, and the configuration of magnetic fields. By using of this coefficient, it is found that our model becomes more consistent with the helioseismic results of total angular momentum, angular momentum density, and the rotation rate in a radiative region than the one without magnetic fields. Not only can the magnetic fields redistribute angular momentum efficiently, but they can also strengthen the coupling between the radiative and convective zones. As a result, the sharp gradient of the rotation rate is reduced at the bottom of the convective zone. The thickness of the layer of sharp radial change in the rotation rate is about 0.036 RR_{\odot} in our model. Furthermore, the difference of the sound-speed square between the seismic Sun and the model is improved by mixing the material that is associated with angular momentum transport.Comment: 8 pages, 2 figure

    Solar Models with Revised Abundances and Opacities

    Full text link
    Using reconstructed opacities, we construct solar models with low heavy-element abundance. Rotational mixing and enhanced diffusion of helium and heavy elements are used to reconcile the recently observed abundances with helioseismology. The sound speed and density of models where the relative and absolute diffusion coefficients for helium and heavy elements have been increased agree with seismically inferred values at better than the 0.005 and 0.02 fractional level respectively. However, the surface helium abundance of the enhanced diffusion model is too low. The low helium problem in the enhanced diffusion model can be solved to a great extent by rotational mixing. The surface helium and the convection zone depth of rotating model M04R3, which has a surface Z of 0.0154, agree with the seismic results at the levels of 1 σ\sigma and 3 σ\sigma respectively. M04R3 is almost as good as the standard model M98. Some discrepancies between the models constructed in accord with the new element abundances and seismic constraints can be solved individually, but it seems difficult to resolve them as a whole scenario.Comment: 10 pages, 1 figur

    Determinant representations of scalar products for the open XXZ chain with non-diagonal boundary terms

    Full text link
    With the help of the F-basis provided by the Drinfeld twist or factorizing F-matrix for the open XXZ spin chain with non-diagonal boundary terms, we obtain the determinant representations of the scalar products of Bethe states of the model.Comment: Latex file, 28 pages, based on the talk given by W. -L. Yang at Statphys 24, Cairns, Australia, 19-23 July, 201

    Differential Entropy on Statistical Spaces

    Full text link
    We show that the previously introduced concept of distance on statistical spaces leads to a straightforward definition of differential entropy on these statistical spaces. These spaces are characterized by the fact that their points can only be localized within a certain volume and exhibit thus a feature of fuzziness. This implies that Riemann integrability of relevant integrals is no longer secured. Some discussion on the specialization of this formalism to quantum states concludes the paper.Comment: 4 pages, to appear in the proceedings of the joint meeting of the 2nd International Conference on Cybernetics and Information Technologies, Systems and Applications (CITSA 2005) and the 11th International Conference on Information Systems Analysis and Synthesis (ISAS 2005), to be held in Orlando, USA, on July 14-17, 200
    corecore